Late-Breaking Work

CHI 2017, May 6-11, 2017, Denver, CO, USA

Intuito: Opportunistic Tangible
Programming by Demonstration for
Physical Components

Rawan Alharbi

Northwestern University
Evanston, IL 60208, USA
rawan.alharbi@northwestern.edu

Nabil Alshurafa
Northwestern University
Evanston, IL 60208, USA
nabil@northwestern.edu

Michael Horn

Northwestern University
Evanston, IL 60208, USA
michael-horn@northwestern.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

CHI'17 Extended Abstracts, May 6-11, 2017, Denver, CO, USA.

ACM ISBN 978-1-4503-4656-6/17/05.

http://dx.doi.org/10.1145/3027063.3053264

Abstract

As computer programming becomes more important to
various fields and disciplines and as it is more commonly
taught in education settings, the number of end-users with
basic programming experience is increasing. The impor-
tance of being able to easily and quickly develop programs
has prompted research in “opportunistic” programming
methods. This research contributes to this domain by intro-
ducing a platform called Intuito, designed for programming
physical components (sensors and actuators) through direct
“programming by demonstration” techniques. Our approach
is to offer users a tangible system that maps the user’s ac-
tions with sensors and actuators into editable text-based
code by inferring the user’s intentions. We present our initial
hardware and software prototype with an in-lab preliminary
evaluation of this system.

Author Keywords

PBD; Sensors; Tangible Interaction; End-user Program-
ming, opportunistic programmers; intelligent interfaces; pro-
totype

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies; Inter-
action styles; Prototyping; User-centered design. []

2322

Late-Breaking Work

Introduction

When it comes to prototyping and building ideas in physi-
cal computing, toolkits like Raspberry Pi[4] and Arduino[1]
have lowered the barrier of entry for non-engineers who
know little about electronics. These kits allowing novices
to program microprocessors using a higher-level language
and well documented libraries. However, despite these ad-
vantages, novice users still face barriers to entry while pro-
gramming physical components [2].

Many online resources provide novice users with sample
code to help them in understanding how to program phys-
ical component. Tutorials can be helpful for illustrating a
concept, especially if they are well documented. However,
even the best tutorials might not be at the right level for

all novice users or they might not address the exact prob-
lem that a user is attempting to solve. This often leads
novices to follow an “opportunistic programming” approach
by searching online to see how others implement different
ideas and functionality and then subsequently copying and
pasting code snippets from different sources to create an
end product. In this case, users have to search for code,
identify the boundaries of the code snippet that is to their
interest and then modify it as needed, which has proven to
be a challenge for novice programmers [6].

To mitigate the errors resulting from copying code from mul-
tiple sources, this paper offers techniques that enable op-
portunistic programmers (novice, intermediate or expert) to
generate code samples through programming by demon-
stration rather than borrowing from online sources. It intro-
duces a platform called Intuito that aids in translating users’
ideas into code. The goal of Intuito is to enable the oppor-
tunistic programmer to focus on the triggers and actions

of the interaction, rather than worry about the depths of
language syntax to translate ideas into code that the com-

CHI 2017, May 6-11, 2017, Denver, CO, USA

puter can understand. Intuito produces starter text code
mapped from the demonstrated events. With Intuito, users
first demonstrate an idea by capturing the state of each trig-
ger or action (e.g. when the button is pressed, then turn on
the light). The system then analyzes the captured events
and produces text code that automates the demonstrated
process. The code can be further edited and modified by
the opportunistic programmer.

The primary contributions of this paper are: (i) The design
of a tangible modular interactive method of programming
by demonstration for physical modules aimed at helping
opportunistic programmers in translating their ideas into
text code that can be reused and modified. (ii) Results from
our preliminary testing with 13 participants. These findings
should help inform the design of future toolkits that uses
tangible programming by demonstration methods to aid
opportunistic programmers.

Background and Related Work

Opportunistic programmers (both novice and expert) care
more about the speed and ease of development rather than
structure and robustness [8]. A research study [3] shows
how opportunistic programmers utilize the internet heavily
to create mash-up programs. They engage in just-in-time
learning to seek clarification of a concept or to remind them
about a syntax or a function. In the research, they found
that opportunistic programmers spend 19% of their time

on the internet with 1/3 of their code copied from different
web pages. Opportunistic programmers rely heavily on ex-
ample code as it serves as a starting point for their project
rather than starting from scratch. This approach of reusing
and modifying code examples is not an approach used by
opportunistic programmers only. Educators have used scaf-
folding with code templates to allow the student to experi-
ment and visualize the logic by modifying specific param-

2323

Late-Breaking Work

eters and rerunning the code [12]. The code provided by
the educator is carefully picked and tailored to the students,
unlike the opportunistic programmer who has to look for dif-
ferent snippets of code and merge them into one program.
The aim of Intuito is to create this starting code by using the
programming by demonstration method, where they man-
ually demonstrate the desired inputs and corresponding
outputs of a system by interacting with Intuito, instead of
spending a lot of time looking for snippets of code and then
merging them to create the desired program.

Programming by demonstration (PBD) is the method of
translating user’s actions demonstrated on a graphical or
physical components into a program. PBD systems differ

in how they represent and generalize the recorded demon-
strated event [10]. Some PBD systems represent the output
as visual before-after rules [14] and others have no repre-
sentation other than playing the recorded actions [5, 13].
Although this simplified representation will not need a com-
puter to display the recorded events, it will limit users’ ability
to edit or share their recorded actions. Since computers are
more widely available and the number of people with some
basic programming skills is increasing, we chose to repre-
sent the captured events visually as triggers and actions
along with an event-driven text code to support the oppor-
tunistic programmer.

PBD systems try to infer and predict what the user's demon-
stration means using heuristics or artificial intelligence,
while other systems save the recorded events as is without
trying to infer user intention [11]. Systems that use heuris-
tics implement rules that help in recognizing the demon-
strated event, most of these rules are encoded when the
PBD system is created, but these rules can be extended
anytime by the developer or the user. Machine learning al-
gorithms can be used to infer programs and improve the

CHI 2017, May 6-11, 2017, Denver, CO, USA

PBD system by providing examples [7], but they fail to ex-
plain to the user how to code such an interaction. Intuito
uses heuristics guided by tangible interaction methods to
infer and produce event-based text programs that control
triggers and action components.

Intuito User Scenario

Sarah is a student who lives a sedentary lifestyle. She sits
in front of her computer all day, and she is starting to no-
tice that she gets headaches and experience fatigue more
often. She decides to take a 10-minute break every hour
whenever she is working in front of her computer. She tries
setting her alarm to ring after an hour, but Sarah keeps ig-
noring the alarm by hitting the snooze button. She soon
realizes that this method does not work for her, and she
starts thinking about other ways to interrupt her workflow
to take a break. She remembers one effective method that
has always worked was her brother interrupting her concen-
tration by waving his hand in front of the computer. Sarah
decides to automate this solution for herself by attach-

ing a hand model to a servo which will start to wave if the
chair sensed her setting for too long. She has some pro-
gramming skills, so she decided to look for example code
online and finds lots of examples. She does her best in
navigating and copying sample code, but when her code
still generates many confusing error messages, and she
starts to get frustrated. Sarah remembers that someone
gave her an Intuito programming by demonstration kit as a
gift where she can simply demonstrate her actions, and it
will get translated to code. She decides to use Intuito, and
her first step is to select Intuito’s trigger and action compo-
nents that she needs (a pressure sensor and a servo with
a hand attached). Then she places them in the desired po-
sition (pressure sensor on the seat and servo in front of
the screen). She opens Intuito’s software and selects the
start recording button. Then she sits on her chair and holds

Late-Breaking Work

Actions captured:
button clicked | -> | light 2 on

button clicked -> | light 2 off

Figure 1: A Screen shot of Intuito’s
software showing the start
recording, stop recording and
update buttons, captured events
and the generated output code.

Light
Sensor

Figure 2: lllustration for some of
Intuito’s trigger and action
components.

the pressure sensor’s capture button for 3 seconds. After
that, she positions the servo at 0 degrees and clicks on the
servo’s capture button. Then she moves the servo to 180
degrees and clicks on the servo’s capture button again. She
then stops the recording using the stop recording button

in Intuito’s software. Intuito provides Sarah with the code,
and she now can test her program right away. She sits on
the chair, and after three seconds the servo hand started

to move immediately. However, Sarah wants to trigger the
servo movement after 60 minutes instead of 3 seconds.
Sarah does not need to go back and demonstrate the ac-
tion by holding the capture button for an hour; she can just
modify the generated code and change the code to trigger
the action after an hour (replace 3 seconds with 3600 sec-
onds) then click on update code button. Sarah is happy with
her solution; she feels that it is working for her because this
is an interruption that triggers a pleasant memory, motivat-
ing her to take a break.

Designing Intuito

Components

In designing our programmable physical components, we
built on the experience and knowledge of others who used
the modular approach [9] to introduce a new modular de-
sign that enables programming by demonstration. Figure 2
shows an illustration of some of the components we proto-
typed. Each component features a capture button to cap-
ture the state of the component (e.g. capture light value
using the light sensor). The LED has an extra switch which
allows the user to change the state of the LED (on or off).
Other components (light sensor, servo, pressure sensor,
and button) do not need it as the state can be changed by
manipulating the component (e.g. moving the servo) or the
environment (turning the light off to capture low light value).
The components are plugged into an Arduino Shield using
a 4-pin connector.

CHI 2017, May 6-11, 2017, Denver, CO, USA

Interface

We implemented an interface (Figure 1) that allows the
user to start and stop a recording session, see the cap-
tured events and update and modify the generated code.
The record button in the interface will activate the recording
mode, listening to any state capture events triggered by the
components. The event captured area will show the state
and the name of the component being captured as feed-
back. When the stop recording interface button is clicked,
the server will implement the algorithm detection logic, and
the result will be displayed in the code area where the user
can edit or add to the code and deploy it again by clicking
on update code. The components communicate with the in-
terface via Musical Instrument Digital Interface (MIDI) mes-
sages sent via a USB cable connected to the Arduino.

Detection Algorithm

Figure 3 shows the steps needed to generate an event-
driven code which will light up the LED whenever the light
in the room is low, or whenever the button is clicked using
the programming by demonstration method. In this exam-
ple, the user wants to program the LED to light up when the
room is dark and turn off when there is light in the room.

In this case, the light sensor will be the trigger component,
and the LED will be representing the action component.
One way of demonstrating this example will be by capturing
the light sensor value when the room is dark, and then the
user clicks the capture button for the LED 4 times to cap-
ture the blinking state (on, off, on and off). The following are
the steps used to in the detection algorithm: State Capture
(capture the states of the components in the program ar-
ray) , Segmentation (segment each independent event that
consist of triggers and actions components), Analysis (ana-
lyze each segment and its components to infer logic) , Code
Generation and Implementation (generate code for each
segment based on the analysis).

2325

Late-Breaking Work

Demonstration & State Capture

User’s demonstration:

Segmentation

CHI 2017, May 6-11, 2017, Denver, CO, USA

Analysis Code Generation

capture low light with light sensor,
and LED on

Program Array LS | LED

lButﬂ(on |LED | Button |LF:D l s | LED |)

01 1010

DR A A A

01 1010 01 0 230 1

button clicked, LED on, LED off, LED Etrmn LED | Button | LE
on, LED off, button clicked, LED off, vy 1 1 3

Button | LED | Button | LED

v \/
Pressed
Pressed gjiny Pressed e

button. on(+func
led. toggle();
b

Uightsensor.on(Jfunction () {
if(lightsensor

=
>230 ted.on()
on »;

Figure 3: Intuito’s detection algorithm steps

Preliminary Evaluation

To evaluate our system, we recruited 13 participants (6 men
and 7 women) with different levels of programming skills.
Four participants considered themselves novice or begin-
ners and nine consider themselves intermediate program-
mers. Eight participants had never programmed a micro-
controller before.

Participants were asked to do four programming tasks

shown in 1 using the programming by demonstration method.

The final output of the programming task was shown in a
video format to avoid any textual or verbal cues that may
bias the participant’s interpretation. Participants were asked
to perform the task in the exact order. We standardized the
programming tasks to understand variability in participants’
demonstration. During the experiment, we recorded the
participants, the computer screen, and the components for
further annotations to understand how the participant used
the system.

All participants completed the programming tasks along
with the code modification task successfully. From the video
of the experiment and the user interviews, we summarize

our findings in the form of design guidelines that will help
inform other researchers who are interested in tangible pro-
gramming by demonstration.

Visualizing the captured events aid in demonstration

As soon as the participant captured an event, it was ren-
dered and displayed on the screen, giving the users a chance
to remember the actions that they performed and to catch
any mistakes in their demonstration sequence. Many par-
ticipants made mistakes while demonstrating and, in such
case, they have repeated the demonstration. An edit func-
tion where the user can remove unwanted recorded events
using Inutito’s software and if needed they can replace

the deleted events with a new event that they will record

by demonstrating it on the components will be more user-
friendly.

Visualizing the captured events details helps in constructing code

landmarks

Participants found that the names and values of captured
events displayed next to the code facilitated locating the
corresponding code. It was easy for participants to change
numbers but some were hesitant to change the logic in the

Late-Breaking Work

Task #

Description of PBD
task and the follow-
ing code modifica-
tion task

When the button is
pressed, the LED
state is toggled (this
is a warm-up task)

When the button is
pressed, the LED
blinks. Change the
speed of blinking.

When the button is
pressed twice, the
LED blinks. Change
it to button clicked 3
times instead.

Only when the light
sensor value is high,
and the button is
pressed the servo
moves. Change it to
when the light is low
and make the servo
move faster

When the button is
pressed the green
LED will light up
first, and then the
red LED. Change
the order to be red
first and then green.

Table 1: Programming tasks that
the participant performed in the
experiment using Intuito

code. We suggest adding clear editable logic symbols (e.g.
sensor value > 887, instead of sensor value: 887) in the
feedback area and to encourage users experimentation.

Feedback to handle over demonstration

Some participants demonstrated the minimum required
events (e.g. demonstrating blinking by turning the LED on
and off once), and others did more (e.g. demonstrating
blinking by turning the LED on and off three times). One
way to avoid having the user over record is to show feed-
back after a predefined minimum set of recorded events is
performed. For example, the LED on, LED off events should
be replaced with a blink event in the feedback area to show
the user that there is no need for further demonstration.
Two participants thought that they had to demonstrate a
“don’t do this case” in Task 2 (the LED components blinks
only after pushing the button component twice). Those

two participants captured the first button push, and then
they captured an LED off state to show a "don’t do this
case” meaning button do not turn the LED now. Then they
pressed the button again to demonstrate the second push
and after that, they demonstrated the blinking state of the
LED. The "don’t do this case” have confused our system
because Intuito interpreted the demonstrated events like
the following: whenever the button is pressed then the LED
will either blink or will stop blinking if it was already blinking
which is not what the user intended to do. Participants who
demonstrated the extra "don’t do this case” treated Intu-
ito as if it was a kid that does not know how to count or as
someone whom they do not have a common language to
communicate with. One solution to that problem can be by
emphasizing that the user has recorded two events in the
captured events area or by telling the user to do the mini-
mum demonstration as if they were acting it out rather than
trying to explain it to the computer.

CHI 2017, May 6-11, 2017, Denver, CO, USA

Conclusion

We have introduced Intuito, a platform that enables oppor-
tunistic programmers to generate a sample code for their
idea by demonstrating. Through our preliminary study and
observations, we presented design guidelines that can help
other researchers in tangible programming by demonstra-
tion field.

Future Work

In future work, we plan to perform an unstructured user
study where we ask people to brainstorm projects that they
want to build using our platform. We will expand our phys-
ical components modules and add Bluetooth capabilities
to it. We hope to can integrate the components with other
nonphysical functionality (ex. send a tweet, or save in a
database) to extend the interaction realm. We also plan to
implement this programming by demonstration method in
programming smart home and wearable devices.

References

[1] Arduino AG. 2016. Arduino. https://www.arduino.cc/.
(2016). [Accessed: 2016-07-01].

[2] Tracey Booth and Simone Stumpf. 2013. End-user
experiences of visual and textual programming envi-
ronments for Arduino. In International Symposium on
End User Development. Springer, 25—39.

[3] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two stud-
ies of opportunistic programming. In Proceedings of
the 27th international conference on Human factors in
computing systems - CHI 09. ACM Press, New York,
New York, USA, 1589.

[4] Raspberry Pi Foundation. 2016. Raspberry Pi. https:
/lwww.raspberrypi.org/. (2016). [Accessed: 2016-07-01].

[5] P. Frei, V. Su, B. Mikhak, and H. Ishii. 2000. Curlybot:
designing a new class of computational toys. Proceed-

2327

https://www.arduino.cc/
https://www.raspberrypi.org/
https://www.raspberrypi.org/

Late-Breaking Work

[6]

[7]

(8]

(9]

ings of the SIGCHI conference on Human factors in
computing systems 2, 1 (2000), 129-136.

Paul Gross and Caitlin Kelleher. 2010. Non-
programmers identifying functionality in unfamiliar
code: strategies and barriers. Journal of Visual Lan-
guages & Computing 21, 5 (2010), 263—-276.

Bjorn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring sensor-based
interactions by demonstration with direct manipulation
and pattern recognition. In Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI °07. ACM Press, New York, New York, USA, 145.
Bjérn Hartmann, Scott Doorley, and Scott R. Klemmer.
2008. Hacking, mashing, gluing: Understanding op-
portunistic design. IEEE Pervasive Computing 7, 3
(2008), 46-54.

Edwin L Hutchins, James D Hollan, and Donald A Nor-
man. 1985. Direct manipulation interfaces. Human—
Computer Interaction 1, 4 (1985), 311-338.

[10]

(1]

(12]

(13]

[14]

CHI 2017, May 6-11, 2017, Denver, CO, USA

Henry Lieberman. 2001. Your wish is my command:
Programming by example. Morgan Kaufmann.

Brad A Myers and Richard McDaniel. 2001. Some-
times you need a little intelligence, sometimes you
need a lot. Your Wish is My Command: Programming
by Example. San Francisco, CA: Morgan Kaufmann
Publishers (2001), 45-60.

Taro Narahara. 2015. Design exploration through inter-
active prototypes using sensors and microcontrollers.
Computers & Graphics 50, 0 (2015), 25-35.

Hayes Solos Raffle, Amanda J Parkes, and Hiroshi
Ishii. 2004. Topobo: a constructive assembly system
with kinetic memory. In Proceedings of the SIGCHI
conference on Human factors in computing systems.
ACM, 647-654.

D Canfield Smith, Allen Cypher, and Larry Tesler.

2001. Novice programming comes of age. Your Wish
Is My Command: Programming by Example (2001).

2328

	Introduction
	Background and Related Work
	Intuito User Scenario
	Designing Intuito
	Components
	Interface
	Detection Algorithm

	Preliminary Evaluation
	Visualizing the captured events aid in demonstration
	Visualizing the captured events details helps in constructing code landmarks
	Feedback to handle over demonstration

	Conclusion
	Future Work
	References

