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ABSTRACT
Thermal information surrounding a person is a rich source for
understanding and identifying personal activities. Different daily
activities naturally emit distinct thermal signatures from both the
human body and surrounding objects; these signatures exhibit both
spatial and temporal components as objects move and thermal
energy dissipates, for example, when drinking a cold beverage or
smoking a cigarette. We present HeatSight, a wearable system that
captures the thermal environment of the wearer and uses machine
learning to infer human activity from thermal, spatial, and temporal
information in that environment. We achieve this by embedding
five low-power thermal sensors in a pentahedron configuration,
which captures a wide view of the wearer’s body and the objects
they interact with. We also design a battery life-saving mechanism
that selectively powers only those sensors necessary for detection.
With HeatSight, we unlock thermal as an egocentric modality for
future interaction research.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.

KEYWORDS
human activity detection; thermal sensing; wearable; low-power
ACM Reference Format:
Rawan Alharbi, Chunlin Feng, Sougata Sen, Jayalakshmi Jain, Josiah Hester,
and Nabil Alshurafa. 2021. HeatSight: Wearable Low-power Omni Thermal
Sensing. In 2021 International Symposium on Wearable Computers (ISWC
’21), September 21–26, 2021, Virtual, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3460421.3478811

1 INTRODUCTION
Thermal sensors provide physical temperature estimates, gener-
ating unique heat signatures of objects across time and space. As
a wearable modality, they enable tracking multiple parts of the
human body and its interaction with objects in the environment
without the need for direct contact. Unlike light-based cameras,
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Figure 1: HeatSight is (A) a chest worn wearable system con-
sisting of five independent low-power thermal sensing ar-
rays allowing a thermal omni capture (180◦) of the wearer’s
surroundings including: (B) the thermal radiation emitted
from objects around the wearer, and (C) the human thermal
signature emitted from the wearer’s body over time. These
thermal human-object interaction signatures can be used
for human activity detection.

thermal sensors do not require scene illumination. Moreover, low-
resolution thermal sensors are more privacy-preserving as they
capture less information. Thermal sensors can also be covered with
opaque thermal passing materials and integrated into existing ac-
cessories, increasing the device’s wearability [4]. However, thermal
sensors’ field of view (FoV) is usually too small to capture objects
in the scene reliably, and changing the FoV of the thermal camera
is an expensive process.

In this paper, we present HeatSight, a new wearable system for
human activity detection (HAR) based on thermal sensing. The sys-
tem utilizes passive infrared (thermal) radiation, which naturally
radiates fromhumans and objects they interact with. HeatSight com-
prises five low-power thermal sensors configured in a pentahedron
on the chest, offering a 180◦ , large, egocentric (frontal body) FoV of
the wearer. HeatSight can capture the wearer’s frontal body along
with their surrounding objects, providing a rich stream of thermal,
temporal, and spatial information for machine-learning-driven hu-
man activity recognition models. HeatSight balances between two
competing system requirements: (1) the need for a large FoV to
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recognize hand-related activities; and (2) the need to save energy
to obtain all-day battery life. To address this FoV-energy tradeoff,
we developed a triggering mechanism that dynamically turns on
and off thermal sensors as the hand and objects appear in the FoV.

To assess HeatSight’s feasibility in classifying human activity,
we conducted an in-lab experiment with participants performing
14 daily life activities that are of interest to the wearable research
community. Our results show that HeatSight achieves a classifi-
cation accuracy of 85.21%, and when compared with keeping all
sensors on, our triggering mechanism doubles battery lifetime.

Overall, we believe this work demonstrates how thermal can
be used to detect human activities from an egocentric point of
view, creating new possibilities for human activity context-aware
applications.

2 RELATEDWORK
Thermal sensors are used in many applications. Larson et al. cap-
tured heat traces of human hands using an overhead thermal camera
to understand surface interactions [10]. Kawashima et al. detected
high-level daily and abnormal activities (e.g., walking or falling)
by placing low-resolution thermal cameras on the ceiling [9]. To
increase the FoV of the thermal camera, Shirazi et al. [18] and Ab-
delrahman et al. [1] utilized thermal reflection to capture mid-air
gesture interactions that take place outside the FoV of the thermal
cameras. High-resolution thermal cameras with a frontal view of
the human face have been used to measure cognitive load [2] and
stress [3]. In some applications, a handheld thermal camera is more
useful as it allows a close-up or targeted capture of an object. For
example, Cho et al. demonstrated that thermal cameras attached to
smartphones could improve automatic recognition of indoor ma-
terials (e.g., brick, carpet) [5]. Handheld thermal cameras can also
assist novice users in house inspection and thermographic-based
energy auditing [11–13]. GlimpseData utilized a low-resolution
thermal camera to filter out unwanted scenes (e.g., scenes with
human presence) from an RGB life-logging camera [7]. Despite the
many applications of thermal sensors, multiple thermal sensing ar-
rays have not been thoroughly investigated as a wearable modality
for activity detection and interaction monitoring, primarily due to
high energy requirements.

3 HEATSIGHT IMPLEMENTATION
3.1 Thermal Sensor Selection
There are several types of thermal sensors available in the market;
we explored three high- to low-power/resolution thermal sensors
including: (1) high-power/resolution FLIR camera [6], (2) medium-
power/resolution MLX camera [14], and (3) low-power/resolution
Grid-EYE camera [16]. Table 1 compares the parameters of the
three thermal sensors along with a sample image. The images were
obtained by wearing each of the sensors on the chest with the lens
pointing up. We also show the RGB image for reference. In all the
thermal images, the outline of the human head is apparent, even
in the case of the low-resolution Grid-EYE thermal sensor, making
all three viable candidates for HAR. However, upon assessing the
parameters tradeoff space presented in Table 1, we eliminated FLIR
due to its high current draw, whichmakes it unsuitable for capturing
data for an entire waking day with a small-sized battery. Given

our desire to capture wide FoV thermal information surrounding
the wearer, we opted to use the Grid-EYE thermal sensor, given
wearability and battery life considerations.

Table 1: Comparison of parameters of three thermal sensors.
HeatSight uses an array of Grid-EYE thermal sensors.

FLIR MLX Grid-EYE

Resolution (𝑝) 160x120 32x24 8x8
Range (𝜇𝑚) 8-14 8-14 8-13
FOV (◦) 57 110x75 60x60
Sensitivity (◦𝐶) 0.05 0.1 0.16
Current (𝑚𝐴) 45.5 23 4.5
Sample Image

3.2 System

Sensors: We connect five low-resolution thermal sensors (Grid-
EYEs) to a development board (Artemis Nano) using a custom
PCB shield. Each thermal sensor captures an 8 × 8 thermal image,
which we then combine to produce a 24 × 24 thermal image. The
microcontroller controls the sensors’ data acquisition and stores
time-stamped sensor data in a micro SD card. The average sampling
rate is 10 Hz.

Encapsulation:We designed, and 3D printed a case to encapsulate
HeatSight. The case contains a base that holds the sensors at the
desired angle (140◦ to achieve a 180◦ FoV). The system is worn on
the body using a neck strap and strong magnets clasping onto the
wearer’s garments to ensure correct positioning.

Calibration: Since we collect data from five thermal sensors, it is
crucial to calibrate all sensors (i.e., they should produce the same
output when facing the same object). Thermal cameras are cali-
brated using a camera shutter or cover. We designed a calibration
cover with a known temperature. We place this cover over each
HeatSight for 1 minute to obtain the offset error and correct each
sensor using the offset. This calibration process is performed once
for each HeatSight device.

Current Consumption: We used an ultra-low-power develop-
ment board (Artemis Nano). The current draw of the system in full
power mode (all sensors activated) is 27 mA, while in trigger mode
(some sensors in sleep mode), it ranges from 7 mA (4 sensors in
sleep mode) to 22 mA (1 sensor in sleep mode). Currently, the sys-
tem is connected to a 3.7-V LiPo battery with a capacity of 500 mAh
that enables the system prototype to remain functional for 18 hours
in a single charge.

3.3 Human Activity Detection
We utilize Convolutional Neural Networks [17] to learn discrim-
inative features from each activity in our dataset. Our network
comprises two convolutional layers (depth = 8 and 16) and two
fully connected layers (n = 784 and 100, dropout = 0.3). In each
convolutional layer, we perform the convolution operator (kernel
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Sensor Dynamic Activation

Obtain the wearer temperature 
from the top sensor 

Check if the right, left, or bottom 
edge of the center sensor 
contains a human pixel

Wake Right
Wake Bottom

𝑭𝒓𝒂𝒎𝒆𝒕 𝑭𝒓𝒂𝒎𝒆𝒕"𝟏
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Full Mode

Figure 2: HeatSight modes of operation: (1) Full Mode when all of the sensors are activated and (2) Trigger Mode when we use
our sensor selective activation algorithm to reduce power consumption. (Video figure attached)

size = 1 and 3, stride = 1), batch normalization [8], rectified linear
unit activation [15], and max pooling [19]. The input to our model
is a 24 × 24 × 35 thermal image. For each time-step, we obtain a
24×24 image by stitching all of the 8×8 images obtained from each
thermal sensor. This enables the model to learn spatial and thermal
information across all sensors. To capture temporal information,
we use a 3.5-second window by stacking 35 24 × 24 consecutive
thermal frames (as channels). We normalize the thermal image to
speed up the training of the neural network. We built our model
using PyTorch and trained it from scratch using 100 epochs.

3.4 Reducing Energy Draw via Trigger Mode
Not all five sensors will provide useful information about an activity.
Each activity relies on data coming from a subset of the sensors
(e.g., the prediction of eating might only require information from
the right and top sensors). Putting the non-essential sensors to
sleep will reduce HeatSight’s energy consumption. We consider a
selective activation strategy in which a pre-defined favored sensor
is always activated (e.g., top and center) and triggers other sensors
as needed to predict activities more accurately. We developed a
triggering heuristic to selectively control the sensors’ wake and
sleep state.

Our selective sensor activation (SSA) algorithm predicts the sen-
sors needed to create 𝐹𝑟𝑎𝑚𝑒𝑡+1 using information from the top
and center sensors at time 𝑡 . First, we obtain the wearer’s human
temperature range from the top sensor as the head is always in the
FoV of the top sensor by design. We then define human pixels to be
a range within ∓6 of the wearer temperature. Then we check the
right, left, and bottom edge (8 pixels each) of the center sensor to
see if a human pixel exists at an edge. If a single human pixel exists,
we activate the nearest sensor to that edge. In Figure 2, we show an
example of consecutive images in Full Mode and in Trigger Mode
(i.e., using the SSA algorithm). The image shows a person about
to drink a cold beverage. 𝐹𝑟𝑎𝑚𝑒𝑡 in the Trigger Mode mode has
two sensors activated (awake) while other sensors are asleep. In
𝐹𝑟𝑎𝑚𝑒𝑡 , we determine what sensors to activate in 𝐹𝑟𝑎𝑚𝑒𝑡+1. The
right and the bottom senor in 𝐹𝑟𝑎𝑚𝑒𝑡+1 is activated because the
right and bottom edges of the center sensor in 𝐹𝑟𝑎𝑚𝑒𝑡 contained
at least one human (wearer) pixel. In contrast, the left sensor re-
mains asleep in 𝐹𝑟𝑎𝑚𝑒𝑡+1 as there is no human pixel on the left
edge of the center sensor in 𝐹𝑟𝑎𝑚𝑒𝑡 . Our SSA algorithm is simple
enough to be implemented on a microcontroller. Moreover, the time
required to run our algorithm and wake the selected sensors is less

Figure 3: Activities performed by volunteers wearing Heat-
Sight (see video): [a] stirring hot water in a pot, [b] opening
a fridge, [c] washing hands, [d] brushing teeth, [e] drinking
hot beverage, [f] eating soup, [g] drinking room tempera-
ture beverage, [h] drinking cold beverage, [i] eating room
temperature crackers, [j] eating cold yogurt, [k] typing lap-
top, [l] answering a phone call, [m] meeting and greeting
someone while standing, and [n] smoking a cigarette.

than the sampling interval of sensor data acquisition (0.1 seconds),
preventing data loss.

4 EVALUATION
4.1 Data Collection
We recruited six volunteers (three women and three men) and asked
them to wear the devices while performing a set of hand-related
activities that are part of daily human activities and that are of
interest to the wearables research community (see Figure 3 for
the list of activities). Participants performed the complete set of
activities in the lab once per round. They were asked to perform
each activity for at least 15 seconds for each round. We used a timer
with audible sounds to remind the participants when to start or stop
an activity. In total, participants performed three rounds and took
a 2-minute break after completion of each round. The experiment
lasted 30 minutes per participant.
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4.2 Activity Detection in Full Mode
We trained a model using data from the first and third rounds using
all participants’ data and then tested it on data collected from the
second round for each participant. This type of evaluation can help
in assessing if the system sensing modality provides enough infor-
mation for the model to learn and classify the different activities
performed at different times. We obtained a mean f-score of 85.21%.
Table 2 shows the f-score of each activity using the Full Mode.

4.3 Activity Detection in Trigger Mode
To quantify the effect of our sensor activation approach on Heat-
Sight energy and human activity prediction, we simulate sensor
activation using the same algorithm applied retrospectively on the
data we collected from our volunteers to generate a new dataset.
Simulation is necessary in our case because we want to compare
both Full and Trigger Modes on the same dataset, allowing us to
thoroughly assess the effect of triggering on activity detection. We
then feed this dataset into the same activity detection model we
built earlier for testing without retraining. Table 2 shows the f-score
of each activity under Trigger mode.

Specifically, we run the SSA algorithm at each time 𝑡 to determine
the sensor status at time 𝑡 + 1 and create 𝐹𝑟𝑎𝑚𝑒𝑡+1. We save the
activation status for each sensor in a CSV file indexed by time.
We then use this information to create a new dataset for each
participant. We check the sensor activation state for each sensor
in a time step. If it is 0 (non-active), we discard the frame for that
sensor at that time step. Otherwise, we keep the data. CNN-based
models, however, expect a constant input size. Therefore, we have
to fill the missing frames of inactive sensors. We replace the missing
sensor frames with a frame that has the median temperature value.
We then use this newly generated dataset as an input to the HAR
model that we generated previously under Full Mode to get the
prediction results.

Table 2 shows the f-score for the Full and Trigger Modes. From
the table, we observe that for most activities, the drop in f-score
is less than 15%, with the overall average drop in f-score due to
triggering being 9.73%.

4.4 Resource Usage
We use the generated CSV (as described above) to estimate the
power cost of the entire system at each time-step, from which we
can then estimate the Joules used and battery lifetime.

𝑛∑
𝑡=0

𝑁𝑡 × 𝐼 ×𝑉 ×𝑇

At each time interval 𝑡 , we obtain the number of sensors that
are activated, 𝑁𝑡 , and multiply it by the current 𝐼 , voltage 𝑉 , and
time elapsed in seconds 𝑇 for one Grid-EYE (we obtain 𝐼 ’s value
from the datasheet, which is 0.0045 A).

In Table 3, we show the difference in energy consumption be-
tween the Full and Trigger Mode by running the same SSA algo-
rithm on the whole dataset. We also present the effect of energy
reduction on battery lifetime for each participant (including the
participant’s non-activity frames). Overall, we observed that energy
consumption reduced by 49.35%, resulting in an average battery
lifetime gain of 3.13 hours (SD=1.4 hours) in Trigger Mode.

Table 2: F-score in Full andTriggerMode. FullMode assumes
that all five sensors are activated, while Trigger Mode acti-
vates the sensor based on our SSA algorithm

Activity Full Mode Trigger Mode Delta

stir_hot 100.00 90.85 -9.15
open_fridge 97.92 89.07 -8.85
wash_hand 90.82 78.41 -12.41
social 99.46 90.73 -8.73
screen_laptop 91.96 67.83 -24.13
drink_hot 93.05 82.66 -10.39
eat_hot 94.92 88.33 -6.58
drink_room 41.01 48.20 7.19
drink_cold 91.67 77.64 -14.03
eat_room 52.99 50.99 -2.00
eat_cold 89.88 76.85 -13.03
brush_teeth 96.45 74.58 -21.87
call 69.10 61.45 -7.65
smoke 83.66 79.05 -4.61

Average 85.21 75.47 -9.73

Table 3: Reduction in power consumption in Trigger Mode

Full Trigger Percentage Battery
Mode (J) Mode (J) reduction (+H)

P1 220.28 93.10 57.74 +3.81
P2 136.80 68.56 49.89 +2.95
P3 140.92 48.84 65.35 +4.87
P4 116.76 77.00 34.06 +1.66
P5 174.27 125.36 28.07 +1.29
P6 122.35 47.71 61.01 +4.24

5 CONCLUSION
Wearable low-power omni thermal sensing can unobtrusively cap-
ture the movement of the wearer’s body parts as they interact with
objects, providing rich information to model many everyday human
activities. Here we present HeatSight, a low-powered chest-worn
system that utilizes multiple arrays of low-power thermal sensors to
detect human activity. HeatSight can capture a 180◦ egocentric ther-
mal view of the wearer’s body along with any heat-emitting object
around the wearer. The system produces a 24 × 24 thermal image
at 10Hz, which allows the capture of thermal, spatial, and temporal
information to detect human activity. We deploy our prototype on
multiple participants who wore HeatSight and performed fourteen
activities of everyday living. Our model shows 85.21% classification
accuracy across all activities. We design a selective sensor activa-
tion algorithm that uses triggering heuristics to reduce energy. We
believe that our work highlights an underutilized sensing modality
that enables a wide range of applications. HeatSight provides an
invisible, and private mechanism for recognizing human activity,
further enabling context-aware applications.
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