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ABSTRACT

Obesity, caused primarily by overeating, is a preventable chronic
disease yielding staggering healthcare costs. To detect overeating
passively, a machine learning framework was designed to detect and
accurately count the number of feeding gestures duringan eating
episode to characterize each eating episode with a feeding gesture
count. With the ubiquitous nature of wrist-worn sensors, existing
literature has focused on detecting eating-related gestures and eating
episodes that are at least f ve minutes long. In this paper, our objec-
tive is to show the potential of commercial smartwatches to be used
in detection of eating episodes with short durations confounded by
other activities of daily living in order to truly capture all eating
episodes in the field The effect of time-series segmentationand sens-
ing configuration on the accuracy of detecting and characterizing
feeding gestures is then analyzed. Finally, the effects of personal-
ized and generalized machine learning models in predicting feeding
gestures are compared. Results demonstratethe large within-subject
variability of eating, where a generalized user-independentmodel
yields a 75.7% average F-measure, whereas a personalized user-
dependentmodel yields a 85.7% average F-measure. This shows the
effects of personalized clustering on feeding gesture count, resulting
in a root mean square error of 8.4.
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1. INTRODUCTION

Eating is essential to human life, not made or distributed for profit
or commercial advantage and thatbut overeating relative to need is
not. Unfortunately, once bad eating habits are formed, they
become challenging to overcome. People overeat for many reasons,
such as loss of control [14], impulsivity due to cues [16], or
heightened
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emotional state as a result of stress [15] or negative affect [8], or
even positive affect [6]. Being able to passively detect overeating in
real time will enable researchers to understandthe antecedents and
causes of overeating.

Prior to detecting overeating, researchers have been focused on
detecting eating compared to other confoundingactivities of daily
living. However, many of the developed eating detection systems
are challenging for participants to adhere to throughoutthe day,
requiring multiple on-body sensors [4] or specialized neck-worn [1],
ear-based [3, 5], or chest-based sensors [23]. Moreover, the eff cacy
of these systems to detect eating in a variety of real-life settings is
yet to be validated.

Prior research on eating using commercial wearable productshas
focused primarily on detecting the act of eating [24], but fall short
of characterizing eating episodes to enable behavioral scientists to
properly understandthe causal determinantsof problematic eating
behaviors. Due to the ubiquitous nature and acceptability of wrist-
worn sensors [12], they provide a viable solution to seamlessly and
objectively detecting eating episodes. Gathering this data will em-
power nutritionresearchers to develop improved systems of dietary
recall, and enable behavioral scientists to test timely interventions
to successfully understandand prevent problematic eating.

Prior literature has begun examining eating episodes in the wild
through feeding gestures [24] and counting of bites [9]. However,
much of the eating episodes involve participants sitting and con-
tinuously eating, uninterruptedby the realities of daily life. While
these systems prove to work well in lab settings, they are unable to
consistently and accurately detect short eating episodes, let alone
characterize them with accurate counts of feeding gestures. In this
paper, these efforts are further expanded upon by analyzing more
realistic eating episodes, where participants make phone calls, walk
aroundto answer the door, type on their laptops, and converse with
people in a room.

Objectively detecting physical activity through passive sensing
of wearable sensors has been researched extensively [17]. It is
currently feasible, within reasonable errox, and using passive sensing
from wearable sensors, to detect bouts and minutes of sedentary,
moderate, and vigorous physical activity, and ultimately classify a
subset of activities of daily living. The problem of passively sensing
and characterizing eating episodes, however, is yet to manifest in
behavioral interventions. This paper attempts to address important
practical challenges in deploying such a system.

2. RELATED WORKS

The widespread availability of embedded wearable accelerome-



Figure 1: A participant wearing two Microsoft Band 2’s (one
on each wrist) prepared to begin eating.

ters and gyroscopes has enabled a new area of research to detect
eating passively through on-body inertial sensors. The focus of this
research effort is on detecting and characterizing eating through
feeding gestures.

The problem of identifying hand-to-mouthgestures has also been
studied to detect smoking activities in order to predict smoking
relapse [21, 22]. PuffMarker successfully detects the timing of
a relapse using multiple sensors, where detecting hand-to-mouth
gestures and hand orientation (using roll and pitch angles) are partof
the smoking lapse system [21]. RisQ also leverages multiple inertial
measurementunits (IMUs) placed on a person’s body together with
3D animation to detect hand-to-mouthgestures, and while the focus
of these systems is primarily smoking, their systems have shown
preliminary success in detecting feeding gestures [19].

Dong et al. shows correlation between bites and caloric intake
and measure intake via automated tracking of wrist motion [10, 11].
Some of their limitations include requiring the user to turnthe device
on and off, and they focus primarily on detecting the start and end of
an eating episode throughoutthe day, as opposed to characterizing a
given eating episode.

Thomaz et al. presenta framework for detecting eating episodes
using wrist-worn accelerometer data [24] and density-based spatial
clustering of applications with noise (DBSCAN) to identify eating
episodes throughoutthe day. Assumed in the study under primary
considerationin this paper are that the beginning and end of an eating
episode are defined interspersed with activities of daily living, and
this study takes the next step of accurately characterizing the eating
episode through feeding gestures. The loop is thus closed on the
practical aspects of deploying an eating gesture system, providing
insight into the impact of slow, fine-graine and fast coarse-grained
segmentation, and reporton using both personalized and generalized
classificatio models and their impact on counting the number of
feeding gestures.

The following are the contributions of this effort: 1) Showing the
correlation and association of feeding gestures and eating duration
with caloric intake; 2) Presenting accuracy of counting feeding ges-
tures; 3) The impact of the non-dominanthand, sensor, and feature
combinations on detecting hand-to-mouthgestures; 4) The benefit
of a personalized compared to a generalized machine learning model
using clustering techniques on detecting feeding gestures; and 5)
Characterizing eating episodes, interspersed with confoundingac-
tivities, by accurately detecting and counting feeding gestures. In
the following sections our system and results are described in more
detail.

3. DATA COLLECTION
3.1 Eating Study

Participants in an in-lab experiment were requested to wear one
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Breakfast

Activity Object Task Method ~ Calories
Eating Fruit Cup Fork 60
Non-Eating Glasses ~ Wear & adjust -
Eating Pancake  Fork & Knife 100
Non-Eating  Conversation — Talk naturally -
Drinking ‘Water Hands 0
Non-Eating Phone Call -
Eating Yogurt Spoon 140
Drinking Tea Hands 0

Table 1: Activities and food consumed during breakfast.

Lunch
Activity Object Task Method ~ Calories
Eating Sandwich Hands 340
Non-Eating Keyboard Type -
Eating Soup Spoon 230
Non-Eating Walk  Walk naturally -
Drinking Sparkling Water Hands 0
Eating Chips Hands 150

Table 2: Activities and food consumed during lunch.

wrist-worn sensor on each hand (Microsoft Band 2s), while fol-
lowing an eating and activity protocol. Fifteen participants were
recruited, 7 male and 8 female. The mean age of the participantswas
31.5 years (ranging from 21 - 63 years, std=12.6). Two participants
were left-handed. The participants were scheduled to come into the
lab on two separate occasions, once for breakfast and another for
lunch. Tables 1 and 2 provide descriptions of the tasks performed
during each meal.

Participants were asked to perform activities thatinvolved eating
using different methods, both using utensils (fork and knife, fork
alone, and spoon alone) and eating with their hands. Intermittently
they were asked to perform other activities such as: have a conver-
sation, make a phone call, put on and off a pair of sun glasses, walk
around the room, and type on the keyboard. The participants were
requested to focus on eating, unless they felt discomfort, and in the
event thata participant was full, they were given the opportunityto
take a break and continueafter the break. If they could not eat more
food, the remaining food was weighed to estimate the amount of
food consumed during the meal.

The entire session was recorded using a camera to annotate the
activities and serve as ground truthfor our models. Different colored
stickers were placed on the chin, hands, and throatof the participants
to aid in annotatingthe video. Figure 1 shows a participant wearing
the sensors.

3.2 Video Labeling

A Logitech C615 HD webcam camera was placed on the side
of the non-dominanthand in order to see the plate, both hands,
and the participants face. We used Chronoviz [13] to label data.
Although in this paper we focus on detecting primarily feeding ges-
tures, the variety of our labels includes eating, drinking, non-eating,
food-to-mouth(F-M), bite, back-to-rest (B-R), chewing duration,
and swallows. Figure 2 illustrates the system used to annotate the
recorded data with time-synchronized ground truthlabels.

3.3 Devices and System

An Android application was designed to act as an information
gateway to the wrist bands and our backend database. The data is
stored in an sql-lite relational database, and can both be transmitted
to a back-end or accessed directly from the smartphone through
local storage. The application allows researchers to specify several
parameters, including participant ID, study ID, device name, and
the option to turnon a combination of sensors (accelerometer, gy-
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Figure 2: Labeling data using Chronoviz to enable the detec-
tion of feeding gestures.
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Figure 3: Relationship between Calories and feeding gestures,
swallows, and eating duration for 54 foods consumed.

roscope, heart-rate, skin temperature, etc.) and their corresponding
sample rates. The local database makes it possible to readily upload
the data to a back end where the data is analyzed for in-the-wild
studies.

One essential challenge was streaming data disconnecting from
the Microsoft Band 2. As a result, a heart beat was added to the
Android application that checks intended sensor connectivity every
one minute, and reestablishes connectivity if necessary.

3.4 Features and Calories

While passive sensing cannot currently capture caloric overeating,
determining how and when people eat still conveys information
about increased caloric consumption. Despite the fact that a single
bite of food can vary drastically in kilocalorie content, it is consis-
tently true that the more someone puts into their mouth, the more
kilocalories they are consuming. Figure 3 shows the average of
hand-to-mouthgestures, swallows, and eating durationbased on an
average of all 15 participants, showing 54 combinations of foods
(from Table 1 and 2). While the trend of the number of feeding
gestures in a meal combination does dip around 340 kilocalories
(that specifi meal included the sandwich which did not require
as many feeding gestures as other meals), the general trendis the
number of feeding gestures linearly increasing with kilocalories.
The Pearson product-momentis used to examine the association be-
tween kilocalories and each of number of feeding gestures, number
of swallows, and eating duration (in minutes).

A significan association between Calories and each of feeding
gestures (r = .86,P < .0001), swallows (r = .87,P < .0001), and
eating duration (r = .91, P < .0001) was found.

4. MODEL DEVELOPMENT

In order to build a model that will be used to detect an intended
outcome, data quality and reliability must be assessed and improved.
Figure 4 presents this study’s approach to developing a model that de-
tects and characterizes moments of eating through feeding gestures,
including algorithms that perform data preprocessing, segmentation,
and classification in order to build personalized and generalized
models to count feeding gestures.
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Figure 4: Framework for building a model that detects feeding
gestures.

4.1 Data Preprocessing

Prior to processing the data, we analyze its reliability to ensure
correct sample rate and negligible missing data. Tri-axial accelerom-
eter and gyroscope data is collected ata sampling rate of 31Hz (or 31
samples per second, on average), a setting offered by the Microsoft
Band 2.

The firs step is to remove poor data from the training models.
For one participantabout 23 seconds of data was lost and excluded
from our model training. The second step of data preprocessing
is to ensure that the inertial signals’ intended measurements were
captured, primarily by smoothing to reduce noise and normalization.
The premise of smoothing data is that one is measuring a variable
that is both slowly varying and corrupted by randomnoise. Conse-
quently replacing each data point with an average of surrounding
points reduces the level of noise, while hopefully not biasing the
values. To smooth the gyroscope and accelerometer data a rolling
mean (pandas.rolling_mean) with a window size of 100 points (ap-
proximately 3 seconds, which we empirically set) is applied. Then
the data is normalized to unit norm which can improve the accuracy
of results when quantifying the similarity of signals across samples.

4.2 Segmentation

A feeding gesture is define throughtwo subfeeding moments:
food-to-mouth,and back-to-rest. Figure 5 provides an illustration
of each part of a gyroscope signal duringa feeding gesture. Prior
to processing values for three variables are set: 1) window_size; 2)
overlap threshold (overlap); and 3) sliding window shift (shif).
When processing the data a fi ed time subdivision of the data is
continuously analyzed in order to decide if it is a feeding gesture
or not. Window_size is the fi ed time subdivision of the signal (1.5
seconds in Figure 5), and the shift represents how fast the window
is being slid; a 50% shift is shown in Figure 5, where the greater the
percentage the faster the window is slid and the less overlap there is
between consecutive data samples. The overlap is the threshold of
overlap between the window and the true feeding gesture label that
determines whether the segment is labeled as a feeding gesture or
not.

When processing the data, however, as shown in Figure 5 a win-
dow is identifie as a feeding gesture (as a’F in Figure 5) only if
the window overlaps with the food-to-mouthsegment or the back-
to-rest segment more than the overlap threshold. For example, in
Figure 5, since the overlap thresholdis set to 60%, segment 3 will be
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Figure 5: Segmentation process of Gyro data with window size,
overlap and shift.

characterized as a non-feeding gesture. As a result, it will identify
the bite section as a non-feeding gesture. This is importantbecause
some people spend a longer time biting, which might impede the de-
tection of feeding gestures. Dynamic Time Warping (DTW) may be
able to account for this problem [18] in detecting similarity between
signals that vary in time.

4.3 Feature Extraction

Following data preprocessing of the raw signal, it is important
to determine what features to collect on the raw signal that will
be predictive of one’s outcome. Due to the high variability across
signals that represent the same activity, and to ensure that the system
is capable of runningin real-time, 11 statistical features are extracted
onfi ed time subdivisions of the data that are known to be useful
in detecting activity [2] and eating [24], including: mean, median,
max, min, standard deviation, kurtosis, interquartile range, quartile
1, quartile 3, skewness, and root mean square (RMS). Running each
statistical feature on each axis of the inertial sensors generates 132
features, creating samples with 132 dimensions in the R!3? feature
space.

4.4 Fine-tuning Signal Processing Parameters

A subsequent step to preprocessing is fine-tunin the signal pro-
cessing parameters. It is importantto test whether a slow-moving
fine-graine (small window size, small shift, and high overlap) or
fast-moving coarse (large window size, large shift, and low overlap)
segmentation of the data provides improvements in the analysis of
feeding gestures. While several prior efforts in detecting feeding
gestures overlook this importantstep, this can drastically impact the
results of classificatio and can provide insight into the detection
of feeding gestures. We tested window sizes ranging from 1 to 2.5
seconds, sliding window shifts from 30% to 70%, and signal overlap
thresholds from 50% to 80%.

In order to test the performance of each signal processing param-
eter, data was used from the 13 right-handedparticipantsand each
participant’s data was balanced into equal feeding and non-feeding
gestures (total of 520 samples). Random Forest (with number of
trees n=100) was used to build predictive models from the training
set prior to testing [7].

Each parameter setting was tested using 10-fold Cross Validation
(CV) and Leave One Subject Out Cross Validation (LOSOCV). To
ensure stability 10-fold CV was run ten times using a different
randomseed and average results.

4.5 Selecting the Best Feature Subset

After identifying the optimal signal processing parameters, the
dimensionality of the problem space is further reduced in order to
identify the primary predictive features. To ensure there is no bias,
feature selection is performed on a different dataset than the one
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Precision | Recall | F-measure
Avg | 0.859 0.858 0.857
Std | 0.041 0.042 0.042

Table 3: Results of the 67/33 train/test split on data of breakfast
and lunch combined.

used to train the predictive models in order to prevent over-fittin of
the training data, and then select the top six features. A filte -based
chi-squared statistical method is used for feature selection to assign
a score to each feature with respect to the outcome.

4.6 Selecting the Optimal Classifier

Once the optimal feature subset and signal processing algorithms
are identified a varied set of classificatio algorithms is tested in
order to ensure selection of the optimal classifie . The tested algo-
rithmsinclude Logistic Regression (LogisticRe g), AdaBoostClas-
sifie (AdaBoost), C4.5 Decision Trees (DecisionTree), Gaussian
Naive Bayes (GaussianNB), Linear Support Vector Classifie (Lin-
earSVC), and Random Forest (RF) with n=100 trees. Both LOSOCV
and 10-fold CV (averaged 10 times) were tested. The variability
across the different runs was also calculated to ensure that not only
was the classifie with the highest F-measure (harmonic mean of
precision and recall) selected, but the one with the lowest variability
(i.e. highest consistency) across the runs. This is essential to show
the consistency of the classifier when tested on different subjects
or a different test set.

4.7 Personalization

It was desirable to test the effect of personalized models on the
accuracy of detecting feeding gestures, compared to generalized
models. As a result the breakfast and lunch were combined and a
67/33 split was performed between training and testing data. The
results of a purely personalized model are tested on each participant
and F-measure, precision, and recall are reported.

4.8 Clustering to Detect Feeding Gestures

When detecting feeding gestures, it is importantto perform post-
processing of the data, in order to cluster feeding gestures. Since
there is overlap between window sizes, and because some feeding
gestures are longer than others, it is important to identify small
clusters of feeding gestures, and filte any isolated feeding ges-
tures. Density-based spatial clustering of applications with noise
(DBSCAN) is applied to group together the samples that are close
together (high density), while marking as outliers the points that are
lower density. A range of values is tested for the two parameters
used by the DBSCAN algorithm: 1) € is used to create an neighbor-
hood of points to assess whether a cluster is worthy of being formed
(a range from 2-4 is tested), and 2) minPts is used to calculate the
minimumnumber of points required to form a dense region (a range
from 1-3 is tested).

5. RESULTS

5.1 Fine-tuning Signal Processing Parameters

The average feeding gesture in the training set used was about 2.8
seconds. However, when looking purely at the LOSOCV (Figure
6) the results seem like there are several optimal parameter combi-
nations (the blue regions have the highest F-measure). However, a
very importantfeature in analyzing performanceis variability across
the different runs. Thus the optimal results from 10-fold CV (Figure
7) and LOSOCV are combined, and then the results that exhibited
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Figure 6: LOSOCY results varying signal processing parame-
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Figure 7: 10FCYV results varying signal processing parameters.

the lowest variability, or highest consistency in performance across
the test set, are selected.

Two parameters were discovered to yield optimal results (both
high F-measure and low variability). One combinationrepresents
a slow fine-graine approach (window size = 1.0sec, overlap = 0.8,
and shift = 0.3) and resulted in LOSOCV F-measure = 0.746 and
variance = 0.008, and the other is more of a fast, coarse-grained
approach (window size = 1.5 sec, overlap = 0.7, and shift = 0.5)
and resulted in LOSOCV F-measure = 0.732, and variance = 0.02.
The slow, fine-graine approach identifie feeding gestures with
the following pattern "FENFF" or "FFNNFF," where the bite in
the middle of the gesture was captured as a non-feeding gesture
moment (N), and the food-to-mouthand back-to-rest were detected
as feeding gestures (F).

5.2 Optimal Feature Subset

The top six features (Gx_qurt1, Gx_mean, Gzirq, Gx_stdev, and
Gx_min) that were selected involved the gyroscope z- and x-axes,
which correspondto the pitch and roll, respectively. Figure 5 shows
the gyroscope data (the rise in Gy and drop in G; prior to the bite)
of the individual eating yogurt with a spoon.

5.3 Selecting the Optimal Classifier

It was decided to test the predictive power of multiple classifica
tion algorithms to assess which classifie will outperformthe other
in detecting feeding gestures using the subset of features. The per-
formance using LOSO CV was compared. It was found that while
the AdaBoost classifie outperformsother classifier in LOSOCV
with an F-measure of 75.7%, the Random Forest Classifie outper
forms all algorithms in 10-fold CV with an F-measure of 75.2%
and produces a comparable F-measure of 75.3% in LOSOCV (See
Figure 8). The interesting factor arises in the fact that LOSOCV
often outperforms 10-fold CV (averaged 10 times), which shows
that the within-subject variability may be so high that even when
the training data contains test-subject data, it remains challenging to
predict feeding gestures.

5.4 Personalization

As a result of the large within-subject variability experienced
within each subject, thelogical next step was seen as building models
based purely on each participant’s data. This experimentwould show
the results of an individual exhaustively trained in an in-lab setting.
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Figure 8: Optimal classifier selection.

We see that the results of a 67/33 split of train/testdata yields high
recall and F-measure as shown in Table 3. Subject 8 seems the most
consistent in her eating pattern, and subject 14 seems to exhibit the
most variability in feeding gestures.

5.5 Clustering to Count Feeding Gestures

Withoutclustering we realized that our classificatio model would
overestimate the number of feeding gestures. This could be a result
of the overlap in the sliding window. As a result we felt thatapplying
clustering algorithms would improve our feeding gesture count. By
testing a range of € and minPts values, however, we achieved poor
feeding gesture count for a generalized model (RMSE = 30.2).

As aresult, we tested a more personalized cluster model setting
for each individual, where the model was trained on lunch data and
tested on breakfast. The results for counting feeding gestures are
presented in Figure 9, and show an RMSE of 8.43.

6. DISCUSSION

The results show promise in the potential to detect feeding ges-
tures using wrist-worn sensors (the Microsoft Band 2). Challenges
do exist with streaming multiple sensor data, but by adding a heart
beat to reestablish connectivity a high reliability of data is ensured.
While feeding gestures may not provide the granularity of caloric
intake required to assess weight loss, it can provide an indicator of
overeating, which can potentially be a trigger for intervention.

The results of this study show that statistical features surrounding
gyroscope data are most informative, and further support prior re-
search surroundingthe effectiveness of pitch and roll in predicting
feeding gestures [21, 10]. We also show that optimizing time-series
segmentation parameters can provide further insight in improv-
ing the accuracy of feeding gestures. However, the effect of f ne-
and coarse-grained data analysis is shown to yield similar results.
Nonetheless, personalizing segmentation parameters for each indi-
vidual can still optimize the detection of feeding gestures.

The system studied shows promise in detecting feeding gestures
despite several confoundingfactors thatinclude talking on the phone,
walking and playing with glasses. Thomaz et al. [24] show promise
in designing a generalized eating detection algorithm that detects
eating at a coarse level over 60-minute window sizes with an F-
measure of 76.1%, however, being able to provide generalized fine
grained characterization of an eating episode remains a challenge.
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This effort shows that within-subject variability is large and that
testing a personalized model to detect feeding gestures for one
individual over long periods of time will be a strong contribution to
the study of eating habits and behavior.

The ultimate goal of this research is to predict problematic eating
episodes. Prior to prediction, we are developing features that charac-
terize these eating episodes in an attemptto predict them. Rahman
et al. have started analyzing "about-to-eat” moments in order to
trigger a just-in-time eating intervention, and attempt to estimate
the time until the next eating event [20]. We hope to further expand
on this effort and not only predict eating moments, but also predict
problematic eating episodes.

7. CONCLUSION AND FUTURE WORK

These finding show the challenge and potential of detecting
feeding gestures in a confounded eating setting. The results of a
generalized and personalized model to detect feeding gestures is
reported on in detail and show a significan correlation between
caloric intake and feeding gestures (r=0.86). Also shown is that
given the large within-subject variability in eating, a personalized
machine learning and density-based clustering model can character-
ize eating episodes with feeding gestures with an RMSE of 8.4. To
further assess our models, future testing assess whether the models
used in this study will hold with participants in the wild. Future
work will test different clustering methods, as well as the effect of
different methods of coding feeding gestures. Moreover, combining
wrist-worn sensors with other sensing modalities, such as neck-worn
or ear-based sensors, has the potential to increase the accuracy of
characterizing eating episodes.
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